1 Properties of Determinants

Property 1

If a determinant has all the elements zero in any row (or column) then its values is zero.

$$\Delta = \begin{vmatrix} 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

Property 2

Determinant of a diagonal matrix is given by product of its diag entries.

$$\Delta = \begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

Property 3

Determinant of a upper or lower triagonal matrix is given by product of its diag entries.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

Property 4

The value of a determinant remains unaltered; if the rows and columns are interchanged. Basically transpose of a matrix has same determinant.

	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃		a ₁₁	a ₂₁	<i>a</i> ₃₁
7 =	<i>a</i> ₂₁	a ₂₂	a ₂₃	=	a_{12}	a ₂₂	<i>a</i> ₃₂
	<i>a</i> ₃₁	a ₃₂	a ₃₃		a ₁₃	<i>a</i> ₂₃	a33

Property 5

If any two adjacent rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only.

$\Delta =$	a ₁₁	a ₁₂	a ₁₃
	a ₂₁	a ₂₂	a ₂₃
	a ₃₁	a ₃₂	a ₃₃
$\Delta^{'} =$	a ₂₁	a ₂₂	a ₂₃
	a ₁₁	a ₁₂	a ₁₃
	a ₃₁	a ₃₂	a ₃₃

Then we have $\Delta = -\Delta'$.

Property 6

If a determinant has any two rows (or columns) identical or proportional, then its values is zero.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

Property 7

If all the elements of any row (or column) be multiplied by the same number, then the determinant is multiplied by that number.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$\Delta' = \begin{vmatrix} Ka_{11} & Ka_{12} & Ka_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{23} & a_{33} \end{vmatrix}$$

Then we have $\Delta' = K\Delta$.

Property 8

If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants, that means

	$x + a_{11}$	$y + a_{12}$	$z + a_{13}$		x	у	z		a ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃
$\Delta = $	<i>a</i> ₂₁	a ₂₂	a ₂₃	=	a ₂₁	a ₂₂	a ₂₃	=	a ₂₁	a ₂₂	a ₂₃
	<i>a</i> ₃₁	<i>a</i> ₃₂	a ₃₃		a ₃₁	a ₃₂	a33		a ₃₁	a ₃₂	a ₃₃

Property 9

The value of determinant is not altered by adding to the elements of any row (or column) a constant multiple of the corresponding elements of any other row (or column).

Exa:

 $R_1 \rightarrow R_1 + mR_2$ (change R1 as sum of R1 and m (R2). $R_3 \rightarrow R_3 + nR_2$ (change R3 as sum of R3 and n (R2).

$\Delta =$	$a_{11} + ma_{21} \\ a_{21} \\ a_{31}$	$\begin{array}{c} a_{12} + ma_{22} \\ a_{22} \\ a_{32} \end{array}$	$a_{13} + ma_{23}$ a_{23} a_{33}
$\Delta^{'} =$	$ \begin{array}{c} a_{11} \\ a_{21} \\ a_{31} + na_{21} \end{array} $	$a_{12} \\ a_{22} \\ a_{32} + na_{22}$	$a_{13} \\ a_{23} \\ a_{33} + na_{23}$

Then this property says, $\Delta = \Delta'$

NOTE: All these properties can be proved just by doing step by step algebra of determinant calculations. Take it as an exercise to prove these results for general form of 3 x 3 matrix.